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Abstract

As a bio-inspired vision sensor with ultra-high speed,

spike cameras exhibit great potential in recording dynamic

scenes with high-speed motion or drastic light changes.

Different from traditional cameras, each pixel in spike cam-

eras records the arrival of photons continuously by firing

binary spikes at an ultra-fine temporal granularity. In this

process, multiple factors impact the imaging, including the

photons’ Poisson arrival, thermal noises from circuits, and

quantization effects in spike readout. These factors intro-

duce fluctuations to spikes, making the recorded spike in-

tervals unstable and unable to reflect accurate light intensi-

ties. In this paper, we present an approach to deal with spike

fluctuations and boost spike camera image reconstruction.

We first analyze the quantization effects and reveal the unbi-

ased estimation attribute of the reciprocal of differential of

spike firing time (DSFT). Based on this, we propose a spike

representation module to use DSFT with multiple orders

for fluctuation suppression, where DSFT with higher or-

ders indicates spike integration duration between multiple

spikes. We also propose a module for inter-moment feature

alignment at multiple granularities. The coarser alignment

is based on patch-level cross-attention with a local search

strategy, and the finer alignment is based on deformable

convolution at the pixel level. Experimental results demon-

strate the effectiveness of our method on both synthetic and

real-captured data. The source code and dataset are avail-

able at https://github.com/ruizhao26/BSF.

1. Introduction

Vision technology has undergone remarkable advancements

recently. Machine vision in scenes with high-speed motion
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Figure 1. Illustration of spike camera image reconstruction (SCIR)

and comparison among recent methods [58, 64, 77] and ours. On

the top-left, an orange point means a spike. Our method can better

recover the textures. Please zoom in for more details.

or drastic light changes is a key challenge in emerging appli-

cations such as autonomous driving [14], unmanned aerial

vehicles [72], and assistant referees in sports [18]. Tradi-

tional digital cameras typically record scenes with a frame

rate of 30 Hz ∼ 120 Hz, which is inadequate to fulfill the

demands of these applications.

Neuromorphic cameras (NeurCams) are a new kind of

bio-inspired vision sensor designed to handle the above-

mentioned challenges. NeurCams record light intensity at

an ultra-high temporal resolution. One kind of NeurCams

are event cameras [22, 29, 35]. They employ a differential

imaging model, in which each pixel records the scene by

outputting events whenever the change in light intensity in

the logarithmic domain surpasses a certain threshold.

Different from event cameras, spike cameras [8, 18]

employ an integral imaging model. Each pixel accumu-

lates photons from scenes independently. Whenever the

accumulation of a pixel reaches a predefined threshold,

it fires a spike and restarts the accumulation. The read-

ing out of spikes is at a high temporal resolution of 40

kHz. Thus, spike cameras can describe light intensities in

a very fine temporal granularity by reporting each pixel’s

https://github.com/ruizhao26/BSF


status of receiving photons at a very high frequency. Based

on these characteristics, spike cameras can handle scenes

with high-speed motion or drastic light changes. Recently,

many tasks have been researched for spike cameras, in-

cluding image reconstruction [9, 10, 60, 64, 69, 73], cod-

ing [8, 12, 74], object tracking [21, 70, 79], optical flow es-

timation [17, 48, 55, 62, 67], and depth estimation [44, 57].

Reconstructing clear images from spikes at an arbitrary

time is a key task for spike cameras. However, the recording

of photons is affected by multiple factors. First, the arrival

of photons follows a Poisson process. Second, the circuits

introduce thermal noise. Third, the spike reading is con-

trolled by a clock signal, which introduces quantization ef-

fects. These factors introduce fluctuations and randomness

to spikes, i.e., even when the light intensity is constant, the

integration period of each spike changes over time. Thus,

reconstructing clear images from spikes is challenging.

Several spike camera image reconstruction (SCIR) meth-

ods have been proposed from different perspectives. These

methods can be roughly categorized into filtering-based

method (FM) [61, 65, 73], neuronic-models-based method

(NMM) [69, 71, 75, 77], and deep-learning-based method

(DLM) [5, 64]. Many of them consider spatial-temporal in-

formation aggregation to obtain clear images. However, the

fluctuations in spikes are not fully explored.

In this paper, we propose a deep neural network that is

boosted from a perspective of dealing with spike fluctua-

tions to obtain clear images. We first analyze the charac-

teristics of the quantization effects of spikes. The differen-

tial of spike firing time (DSFT) [67] measures the duration

of spike integral to which a spatial-temporal point belongs.

We reveal the reciprocal of DSFT can offer an unbiased es-

timation of light intensities under quantization effects when

the input is stable. Based on this attribute, we propose a

multi-order DSFT fusion (MODF) module for spike repre-

sentation. The MODF extracts features from the recipro-

cal of DSFT to pursue unbiased light information. Further

considering photons’ Poisson arrival, we extend DSFT to

higher orders. Higher-order DSFT represents intervals of

multiple spikes, describing stabilized light intensities in a

longer temporal scale. The MODF uses multi-order DSFT

to approximate light intensities with higher fidelity. It ex-

tracts features from the reciprocal of DSFT with multiple

orders and fuses them in pursuit of reducing the influence

of fluctuations in spikes.

Further considering the impact of the dynamic changes

of light and motions. we propose a multi-granularity align-

ment (MGA). It aligns features in a pyramidal fashion.

At each level, the feature is aligned by coarse-granularity

alignment (CA) and fine-granularity alignment (FA). The

CA aligns the reference features towards the key features

using a patch-level cross-attention with a local search strat-

egy. Based on the initial patch-level alignment of CA, the

FA aligns features at pixel level using deformable convo-

lutions. We synthesize a benchmark dataset that incorpo-

rates multiple light intensities and Poisson effects to eval-

uate SCIR methods. Our method achieves state-of-the-art

performance on both synthetic and real-captured data. Our

key contributions can be summarized as follows.

(1) We analyze the characteristics of spikes under the quan-

tization effects and reveal the unbiased estimation attributes

of the reciprocal of DSFT.

(2) We propose a network with multi-order DSFT fu-

sion (MODF) and multi-granularity alignment (MGA)

modules. These two modules contribute to our model for

obtaining more clear images from spikes

(3) Experiments conducted on synthetic and real-captured

data demonstrate that the proposed method achieves state-

of-the-art performance for SCIR.

2. Related Work

Image reconstruction for spike cameras.

Filtering-based methods. TFP and TFI [73] use the fir-

ing rate in a temporal window and the firing interval of a

spike to represent the light intensity, respectively. Zhao et

al. [61, 65] propose to align the preliminary reconstructed

images with optical flow [3] and fuse aligned images us-

ing a temporal auto-regressive model [47] for long-term fil-

tering. MGSR [63] predicts super-resolved images from

spikes based on the mapping of coordinates with different

scales based on optical flow.

Neuronic-model-based methods. SNM [75, 77] is a

neuronic model with three-layer leaky integrate and fire

(LIF) neurons. The model is trained based on the spike-

timing-dependent plasticity (STDP) mechanism [2]. TF-

STP [69, 71] uses the short-term plasticity (STP) mech-

anism [27] to construct the relationship between binary

spikes and light intensities based on postsynaptic potentials.

Deep-learning-based methods. Spk2ImgNet [64] aligns

features at different moments with pyramidal deformable

convolutional networks [7, 43, 78] and fuses them for SCIR.

SSML [5] employs a blind-spot network [20] for SCIR.

Zhang et al. [58] use wavelet to enhance spike represen-

tation for SCIR. Zhao et al. [68] use deep spiking neural

networks for SCIR. Zhao et al. [66] propose a deep unfold-

ing network for obtaining super-resolved SCIR. Xiang et

al. [50] propose a spike-based super-resolution network us-

ing optical flow for alignment. Methods with hybrid cam-

eras based on traditional [4, 15, 16, 49] and event [76] cam-

eras for improving the imaging performance of the spike

camera are also proposed recently.

Image reconstruction for other emerging cameras.

Event cameras record changes in light intensities in

the logarithmic domain using polar events. There are

optimization-based [1, 30] and deep-learning-based meth-

ods such as E2Vid [36, 37], FireNet [39], and ETNet [46]
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Figure 2. Working mechanism of spike cameras.

proposed for event-based image reconstruction. Since event

cameras mainly record moving objects, reconstructing im-

ages with only events may cause errors of estimation for

global contrast. Recently, more works [23, 32, 33, 40, 41]

use traditional images to offer light information of static re-

gions to help event cameras reconstruct clear images.

Quanta image sensor (QIS) [26] is a kind of photon-

counting sensor. it can be divided into CCD / CMOS (CIS)

QIS [25] and single-photon avalanche detector (SPAD)

QIS [54]. QIS aims at photon-level detection and it can

work well in ultra-low-light scenes with very few pho-

tons [6, 11, 13, 34, 38].

3. Working Mechanism of Spike Camera

The working mechanism of spike cameras is shown in

Fig. 2. Each pixel of the spike camera comprises three main

components: a photon receptor, an integrator, and a com-

parator. The incoming photons are captured by the pho-

ton receptor and accumulated by the integrator. Whenever

the number of accumulated photons reaches a predefined

threshold θ, a spike is fired, and the integrator is reset. Sup-

pose L = L(x, t) is the expected number of arrival photons

at a pixel area per unit time, where x = (x, y) is spatial

coordinate and t is time stamp. The accumulation in the

integrator can be formulated as:

A(x, t) =

∫ t

0

αP (L(x, τ)) dτ mod θ, (1)

where A is the accumulation, α is the quantum conversion

coefficient of photons, and P means Poisson sampling:

P (X = k; J) =
Jk

k!
e−J , k ∈ Q, (2)

where P means probability, and J is the expected number of

arrival photons.Q means the natural number set. The ther-

mal noises are omitted here.

spike cameras read spike arrays out at an ultra-high

speed of up to 40 kHz. Their outputs can be formulated

as S ∈ BH×W×T , where B means the binary domain. The

threshold θ is configured to ensure that no more than one

spike can be fired within any spike-reading interval.
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Figure 3. The overall architecture of the proposed BSF network

for spike camera image reconstruction.

4. Methods

4.1. Overall Architecture

The overall architecture of the proposed method is shown

in Fig. 3. We segment 5 spike sub-streams {Si}
2
i=−2 in

the temporal axis from the spike stream S ∈ BH×W×T

to reconstruct the scene at moment t0, where i is the in-

dex indicating the time. Si is centered at moment ti:
Si(x) = {S(x, t)}ti+wh

t=ti−wh
, where wh is the window radius.

We refer to t0 as key moment and refer to {ti}|i|={1,2} as

referecen moments. These five spike sub-streams are ex-

tracted into representations {Ri}
2
i=−2 through the multi-

order DSFT fusion (MODF) module, where DSFT is differ-

ential of the spike firing time [67]. Then the representations

are encoded into features {Fi}
2
i=−2. Features at reference

moments are then aligned to the key moment by the multi-

granularity alignment (MGA) module. The reconstructed

image is obtained by fusing the key feature and aligned ref-

erence features using several convolutional layers.

4.2. Multi­order DSFT Fusion

The purpose of spike representation is to extract initial light

information from spikes. In the imaging process of spike

cameras, the recording of photons has randomness due to

the Poisson process of photons’ arrival, making the time for

the number of photons to reach the threshold exhibit ran-

domness. Besides, since the spike readout is controlled by

a clock signal, the reading time and firing time are usually

slightly different, introducing quantization effects. In short,

the periods of spikes are unstable and do not directly reflect

the light intensity, i.e., the spikes are fluctuating.

To extract stable light intensities under the impacts of the

above-mentioned fluctuation factors of spikes, we design a

multi-order DSFT fusion module based on three proposi-

tions as follows. Note that we focus on the processing of

a single spike sub-stream in this subsection, we omit the

subscript index i that indicates the time.

Proposition 1: Using DSFT as input. The concept of

differential of spike firing time (DSFT) is proposed in

Spike2Flow [67]. As shown in Fig. 4, the DSFT of each
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point in the 3D coordinate represents the duration of the

spike integration period it belongs to. In other words, the

DSFT measures the time interval between the previous and

the next spike. In this paper, the version of DSFT mentioned

above is named (1,1)-order DSFT D
(1,1)
SFT .

In binary spikes, “1” represents light intensities in a time

process but not a time point. Thus, the binary spikes cannot

reflect light intensities at the reading moment in a simple

way. The light intensity at the reading moment of each “1”

can be different. In DSFT, the value represents the current

light intensity of each point in the 3D coordinate. Thus,

DSFT offers more relative information about light than bi-

nary spikes, and we use DSFT to pursue light intensities

contained in physical reality.

Proposition 2: Processing DSFT in reciprocal domain.

In this part, we analyze the DSFT and quantization effects.

In the analyses of this proposition, we omit the thermal

noise and assume the photons’ arrival is constant. Sup-

pose the firing threshold of the spike camera is θ, the spike-

reading time interval is Tr, and the incoming rate of pho-

tons is ζ. During a spike-reading time interval, the num-

ber of photons reaching a pixel area is L = ζTr. We can

infer the light intensity through the ratio of θ and D
(1,1)
SFT :

L̃ = θ/D
(1,1)
SFT . When θ mod L = 0, the D

(1,1)
SFT is stable.

However, as shown in Fig. 5, when θ mod L ̸= 0, even

when the photon’s arrival is constant, the D
(1,1)
SFT has differ-

ent values go up and down around θ/L. This is the value

instability attribute of DSFT, which contributes to the fluc-

tuations of spikes. To handle such issues caused by quanti-

zation effects, we propose the following theorem and design

a spike representation module based on the theorem.

Theorem 4.1. Suppose the symbolic definition is the same

as above and θ mod L ̸= 0. When the photons’ ar-

rival is constant, The (1,1)-order DSFT has only two values

{⌊θ/L⌋, ⌈θ/L⌉} and its distribution is as follows:





Pr
{
D

(1,1)
SFT = ⌊θ/L⌋

}
= p1 = (⌈θ/L⌉ − θ/L) · ⌊θ/L⌋

θ/L

Pr
{
D

(1,1)
SFT = ⌈θ/L⌉

}
= p2 = (θ/L− ⌊θ/L⌋) · ⌈θ/L⌉

θ/L

(3)

where Pr{·} means probability.

The proof of the above theorem is in Sec. 7 of the sup-

plementary material (abbreviated as supp hereafter). Eq. (3)
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shows that when photons’ arrival is constant, the D
(1,1)
SFT

has only two values: the ceiling value and the floor value

of θ/L. This distribution indicates the estimated L̃ =

θ/D
(1,1)
SFT fluctuate. Although the D

(1,1)
SFT is unstable when

θ mod L ̸= 0, we find that 1/D
(1,1)
SFT is an unbiased esti-

mation of L/θ according to Theorem 4.1:

E

(
1

D
(1,1)

SFT

)
=

1

⌊θ/L⌋ · p1 +
1

⌈θ/L⌉ · p2 =
L

θ
. (4)

Through the reciprocal of D
(1,1)
SFT , the unbiased estimation

of L can be obtained. Note that since D
(1,1)
SFT is not constant,

E(D
(1,1)
SFT ) is a biased estimation for θ/L according to har-

monic mean inequality (introduced in Sec. 7 of supp). Thus,

we process the DSFT in its reciprocal domain to pursue an

unbiased estimation of light intensities.

Proposition 3: Fusing DSFT with multiple orders. Con-

sidering Poisson noises, motion, and light change, the con-

stant photon-arrival assumption is practically limited in re-

ality. In pursuit of stable light information under these fac-

tors that contribute to spike fluctuations, we expanded the

(1,1)-order DSFT to (n1, n2)-order DSFT:

D
(n1,n2)
SFT (x, t) = T

(n2)
next (x, t)−T

(n1)
prev (x, t)

= min
{
τ
∣∣∣
∑τ

k=t+1
S(x, k) = n2, τ > t

}

−max
{
τ
∣∣∣
∑t

k=τ
S(x, k) = n1, τ ≤ t

}
,

(5)

where T
(n2)
next (x, t) is the time stamp of the n2-th next spike

at pixel x and time stamp t. Tn1

prev(x, t) is the time stamp

of the n1-th previous spike, where spike at (x, t) is counted

into Tn1

prev if S(x, t) = 1. The D
(n1,n2)
SFT (x, t) represents

the spike interval between the n1-th previous spike and the

n2-th next spike. DSFT with higher order can suppress the

Poisson effects to stabilize fluctuations. Thus, we use DSFT

with multiple orders to obtain stable light information



Figure 7. Illustration of the multi-granularity alignment (MGA) module for aligning Fref
i to Fkey. On the left is the architecture of the MGA

module. On the right is the architecture of the cross-attentional patch-level alignment (CAPA) module in the MGA.

Based on the above discussion, we propose a multi-order

DSFT fusion (MODF) module. As shown in Fig. 6. We

use {D
(n1,n2)
SFT }n1,n2∈{1,2} as input. Similar to spike sub-

streams, all the DSFT streams have a length of (2wh + 1).
All the DSFT streams are taken reciprocal and normalized

by multiplying with interval numbers χi = n1 + n2 − 1
of the corresponding order. Then the reciprocal DSFT are

extracted to be features through a weight-shared feature ex-

tractor Φ. Compared with DSFT with higher orders, D
(1,1)
SFT

undergoes less motion blur since it contains the fewest spike

intervals. Thus, we use features from D
(1,1)
SFT as foundation

and use features from higher-order DSFT to enhance the in-

formation in D
(1,1)
SFT . This process can be formulated as:

R = Φ
( 1

D
(1,1)
SFT

)
+Υ

(
Cat

({
Ψξi

(
Φ
( χi

D
ξi
SFT

))}3

i=1

))
,

where





{ξi}3i=1 = {ξ1, ξ2, ξ3} = {(1, 2), (2, 1), (2, 2)},

{χi}3i=1 =
{∑

(ξi)− 1
}3

i=1
= {2, 2, 3},

(6)

where Φ is the feature extractor, Ψ(n1,n2) is for extract-

ing information from D
(n1,n2)
SFT , ξi is the index of (n1, n2),

Υ means fusion operation through convolution, and Cat is

channel-wise concatenation. The representations {R}2i=−2

are then encoded to be features {F}2i=−2, where the encoder

consists of 4 residual blocks.

4.3. Multi­granularity Alignment

The utilization of long-term information is key to recon-

structing high-quality images from spike streams. We

achieve this objective by aligning information from spike

sub-streams at different moments: we align the information

from features at moments {ti}|i|=1,2 (reference features) to

the t0 moment (key feature) and then fuse all these features.

The MODF module aims to extract stable representa-

tions of light intensities from binary spikes. However, mul-

tiple factors contribute to the fluctuations of spikes in prac-

tice. These factors make corresponding areas in features

at different moments have different values, improving the

matching error in the alignment process.

To realize robust alignment, we propose a multi-

granularity alignment (MGA) module with a pyramid struc-

ture. In each pyramidal level, the alignment is from coarse

granularity to fine granularity. As shown in the left of Fig. 7,

the input features are downsampled by convolutions to con-

struct a pyramid. Suppose F
key

ℓ is key feature at t0 mo-

ment at the ℓ-th pyramidal level, and Fref
i,ℓ is reference fea-

ture at ti moment at the ℓ-th pyramidal level. F
key
i,1 = F

key
i

and Fref
1 = Fref are initial input of MGA. In each pyra-

midal level, the reference feature is first aligned by coarse-

grained alignment (CA) and then aligned by fine-grained

alignment (FA). The CA locally aligns features at a patch

level, and the FA further aligns features at the pixel level.

In CA, we propose a Cross-Attentional Patch-level Align-

ment (CAPA) with a local search strategy for initial coarse

alignment. The design propositions and details of the CAPA

are as follows.

The aim of alignment is to align the reference features

Fref
i,ℓ to spatial coordinates of the key feature F

key

ℓ , i.e.,

searching for corresponding contents of F
key

ℓ in Fref
i,ℓ. Con-

sidering the above analysis, we design a cross-attentional

operation in CAPA. We use F
key

ℓ to construct the Query,

and use Fref
i,ℓ to construct the Key and Value. Patch-

level operation is a classic auxiliary strategy in pixel-level

tasks [24, 52, 53]. Considering the light intensity informa-

tion is more stable in a local region than in a pixel, we de-

sign CA to be patch-level to provide a foundation for sub-

sequent pixel-level alignment. Thus, the embedding proce-

dure in the CAPA can be formulated as:

Q
p

ℓ = Z[Qℓ] = Z[WQF
key

ℓ ], (7)

K
p

i,ℓ = Z[Ki,ℓ] = Z[WKFref
i,ℓ], (8)

V
p

i,ℓ = Z[Vi,ℓ] = Z[WV F
ref
i,ℓ], (9)

where Z is the patchification operation with sp × sp size.

Suppose after padding for patchification, the spatial resolu-

tion of feature F
key

ℓ and Fref
i,ℓ at the ℓ-th level is Hℓ×Wℓ, the

spatial resolution of Q
p

ℓ,K
p

i,ℓ and V
p

i,ℓ is Ĥℓ × Ŵℓ, where

Ĥℓ = Hℓ/sp and Ŵℓ = Wℓ/sp. In this way, we can real-



ize transforming Fref
i,ℓ to approximate F

key

ℓ according to the

relationship of “using F
key

ℓ to query Fref
i,ℓ”. In other words,

the cross-attention implements alignment from Fref
i,ℓ towards

F
key

ℓ . Based on the above discussion, we design a patch-

level local search strategy in CAPA. The attention opera-

tion can be formulated as follows:

V̂
p
i,ℓ(x) = A

(
V

p
i,ℓ(x)

)
σ

(
(Q

p
ℓ)

⊤(x) A
(
K

p
i,ℓ(x)

)
√
Ck

)
, (10)

where x ∈ QĤℓ×Ŵℓ . A(·) is the local sampling operator

with kp × kp size. σ means softmax on the dimension with

k2ps
2
p channels as shown in the right of Fig. 7. Ck is the

channel number of the query, key, and value. The A(·) can

be formulated as:

A
(
V

p
i (x)

)
=

{
V

p
i (x+ δ)

}
δ∈N (x;kp)

, (11)

where N (x; kp) is a kp×kp area centered on x. Through A,

we construct key vectors over a larger range for each query

vector, which realizes search operation in Fref
i,ℓ for align-

ment towards F
key

ℓ . Based on the patch-level operation and

the local search strategy, CAPA implements alignment in a

coarse granularity with more stable light information than

global pixel-level alignment. The illustration of CAPA and

the size of each tensor are shown on the right of Fig. 7. The

coarse-grained alignment F̂
p

i,ℓ is obtained through inverse

patchification of V̂
p

i,ℓ:

F̂
ref
i,ℓ(x) = F

ref
i,ℓ(x) + λZ−1

[
V̂

p
i

]
(x), x ∈ Q

Hℓ×Wℓ , (12)

where Z−1 means inverse patchification operation and λ is

a learnable parameter. Through CAPA, each pixel in Fref
i,ℓ is

aligned to F
key

ℓ based on kp × kp patches centered at F
key
ℓ .

The coarse aligned F̂ref
i,ℓ is then aligned in fine-

granularity by deformable convolutions (DCN) [7, 78]:

F̃
ref
i (x) =

∑

δ∈N (x;kd)

K(δ)F̂ref
i

(
x+δ+Oi(x, δ)

)
Mi(x, δ), (13)

where the subscript ℓ is omitted. F̃ref is the fine-grained

aligned feature. kd is the kernel size of the DCN. O and

M are the offset and mask of the DCN, respectively. They

are obtained from the initial aligned F̂ref
i and Fkey, and they

are passed and fused between different pyramidal levels by

upsampling as shown in the left of Fig. 7. Besides, the

aligned F̃i is also passed and fused between different levels

by upsampling. In short, the MGA aligns features at dif-

ferent scales and granularities. The CAPA uses patch-level

light information to reduce matching errors caused by spike

fluctuations, aiming to provide reliable foundations for fine-

grained alignment.

The key feature and aligned reference features are then

fused through the reconstruction layer, which is composed

of several layers of convolutions and ReLU:

Ĩ(t0) = Recon
(
Cat

({
F̃
}−1

i=−2
, F0,

{
F̃
}2

i=1

))
. (14)

5. Experiments

5.1. Data Preparation

To synthesize spike data, we refer to the simulation pro-

cedure proposed in literature [64] and extend the simula-

tor. First, we use an advanced video frame interpolation

method EMA-VFI [56] to achieve high-fidelity continuous

scene generation. Second, based on the temporally interpo-

lated continuous frames, we set a parameter η to simulate

different levels of light intensity. Third, we simulate the

Poisson process of photons’ arrival.

Since the aperture size and spike firing threshold are

adjustable, the settings of parameters in the simulation

pipeline are without loss of generality. Based on the contin-

uous scenes, we establish 3 different light intensity factors

η = {1.00, 0.75, 0.50}. γ is the conversion of pixel values

to the expected number of arriving photons within a single

pixel during one readout interval Tr, and we set γ as 60.

We set the quantum conversion factor α as 0.7. Suppose a

pixel value at moment t is I(t). During interval (t, t + Tr),
the integral in the accumulator is ∆A(x) = αP(ηI(x, t)),
where P is Poisson sampling. We set the firing threshold as

θ = max(I) · γ. Since α < 1, the number of fired spikes

within Tr will not exceed one.

We use the REDS dataset [31] at 120 FPS and 1280×720
resolution to generate the REDS-SCIR dataset. In REDS,

there are 240 scenes for training and 30 scenes for evalu-

ation. For each training scene, we crop it to 12 scenes at

256 × 256 resolution. For each evaluation scene, we crop

it to 4 scenes at 384 × 512 resolution. Given that we have

3 light intensity factors η = {1.00, 0.75, 0.50}, there are

240 × 12 × 3 = 8640 and 30 × 4 × 3 = 360 scenes for

training and evaluation, respectively. For each scene, we

use 40 frames to generate 400 spike frames. We use the

high-quality gray images from the REDS as ground truths.

5.2. Implementation Details

In the experiments, we set the patchification size sp in

CAPA as 3. Since CAPA is used for initial alignment, we set

kernel size kp of local sampling operation as 3 for simplic-

ity. During training, we randomly crop the spikes to 96×96
spatially, and we use random horizontal and vertical flips as

well as random rotation for data augmentation. The net-

work is trained for 60 epochs with a batch size of 8. We use

Adam optimizer [19] with β1 = 0.9 and β2 = 0.999. The

learning rate is initially set as 1e-4 and scaled by 0.5 every

10 epoch. The network is trained based on ℓ1 loss between

the normalized estimated Ĩ(t0) and its ground truth Igt(t0):

L =
∥∥Ĩ(t0)

/
(α · η)− Igt(t0)

∥∥
1
. (15)

5.3. Comparison with Existing Methods

We divide existing methods for comparison into 4 parts: (A)

traditional training-free methods, (B) event-based image re-



Part Method
η = 1.00 η = 0.75 η = 0.50

Params (M)

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

(A)

TFP [73] 27.27 0.711 0.265 26.73 0.669 0.300 25.62 0.581 0.370 —

TFI [73] 23.55 0.634 0.329 24.77 0.673 0.293 26.77 0.713 0.249 —

TFSTP [69] 20.35 0.678 0.270 19.62 0.685 0.252 21.10 0.707 0.247 —

MAHTF [65] 29.57 0.879 0.112 30.07 0.884 0.113 29.65 0.869 0.136 —

(B)
FireNet [39] ♣ 34.38 0.922 0.077 33.87 0.911 0.084 32.62 0.884 0.105 0.038

ETNet [46] ♣ 33.24 0.918 0.082 32.85 0.909 0.089 31.96 0.889 0.109 22.179

(C)
SSML [5] 32.60 0.920 0.088 32.09 0.907 0.097 31.00 0.879 0.122 2.385

SSML [5] ♣ 33.94 0.923 0.075 33.27 0.909 0.088 32.01 0.883 0.116 2.385

(D)

Spk2ImgNet [64] 35.21 0.953 0.036 34.70 0.945 0.044 33.75 0.926 0.064 3.904

Spk2ImgNet [64] ♣ 39.16 0.966 0.024 38.27 0.958 0.032 36.59 0.940 0.051 3.904

WGSE [58] 35.21 0.950 0.039 34.98 0.947 0.042 34.11 0.931 0.057 3.806

WGSE [58] ♣ 38.97 0.964 0.027 38.23 0.957 0.034 36.75 0.940 0.049 3.806

BSF (Ours) 39.76 0.970 0.021 39.09 0.964 0.027 37.76 0.951 0.040 2.477

Table 1. Quantitative results on the evaluation set on REDS-SCIR with full-reference metrics. ♣ means the network is retrained on REDS-

SCIR with the same settings as ours. Best in red bold and second best in blue. ↑ and ↓ means larger and smaller is better, respectively.
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Figure 8. The impact of the window length on TFP [73].

Bicycle Book Car Doll

Fan Leg Mask Poker

Rotation Spinning Splash Train

Figure 9. The real-captured scene used for evaluation. Each scene

is shown through a frame reconstructed by our method.

construction networks, (C) self-supervised SCIR methods,

and (D) supervised SCIR methods. We do not compare

SNM [77] on REDS-SCIR since the official program will

be unresponsive with 384× 512 resolution input. Although

part (B) is initially proposed for event data, it is designed for

processing streaming data rather than specifically for event

data. Given that spikes are also streaming data, we select

them for comparison. We use three full-reference metrics:

PSNR, SSIM [45], and LPIPS [59] (Alex version). All these

three metrics measure the distance between predicted im-

ages and their corresponding ground truths. The evaluation

on REDS-SCIR is based on predicted images normalized

by α and η in the way like Eq. (15): Inorm = Ipred/(α · η).
Methods in part (A) are training-free. TFP [73] is the

temporal mean of a segment of spikes, which has a hyper-

parameter of window length wl. As shown in Fig. 8, we

Part Method BRISQUE ↓ PIQE ↓ HOSA ↓

(A)

TFP [73] 37.502 45.956 35.436

TFI [73] 37.708 45.148 30.892

TFSTP [69] 37.585 38.714 29.173

SNM [75] 32.089 41.927 29.334

MAHTF [65] 30.910 30.068 26.757

(B)
FireNet [39] ♣ 25.545 25.076 35.305

ETNet [46] ♣ 33.403 46.682 36.482

(C)
SSML [5] 29.240 25.491 35.399

SSML [5] ♣ 32.234 26.981 35.554

(D)

Spk2ImgNet [64] 29.351 26.745 25.761

Spk2ImgNet [64] ♣ 29.180 39.593 31.287

WGSE [58] 24.637 27.831 25.657

WGSE [58] ♣ 23.429 30.673 27.434

BSF (Ours) 18.529 23.477 25.523

Table 2. Quantitative results on real-captured data.

test the wl in a range of {2n + 1}49n=4 on the REDS-SCIR.

We select a wl = 41 that performs well on different η. For

part (B), we clip the 60 frames centered at the moment to

be reconstructed into 10 segments for recurrent inputting.

For parts (C) and (D), they are originally trained on spike

data synthesized from REDS [64], thus, we preserve both

the original and retrained version. Besides, when retrain-

ing SSML [5], we use its original self-supervised loss. As

shown in Table 1, our method achieves the best performance

across all the η on the three metrics. Note that part (A) has

no parameters since they are not deep learning methods.

Besides synthetic data, we also compare the above meth-

ods using data captured by spike cameras in the real world.

We use spikes of 12 scenes, which are shown in Fig. 9. For

quantitative comparison, since there are no ground truths,

we employ three blind image quality assessment met-

rics, namely BRISQUE [28], PIQE [42], and HOSA [51].

BRISQUE uses statistics of locally normalized luminance

to quantify possible losses of naturalness. PIQE estimates

quality only from perceptually significant spatial regions

with local features. HOSA uses a small codebook based on

high-order statistics aggregation to build the global quality-
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Figure 10. Visual comparison on real-captured data. In the visualization of spikes, an orange point means a spike. Gamma transformation

with parameter 2.2 is used for visualization.

Case MODF
MGA PSNR ↑

DCN CAPA Pym η = 1.00 η = 0.75 η = 0.50

(1) Spike 38.44 37.69 36.29

(2) D (1,1) 38.78 38.10 36.80

(3) ✓ 38.99 38.32 37.00

(4) ✓ ✓ 1 38.91 38.26 36.96

(5) ✓ ✓ ✓ 1 39.06 38.39 37.06

(6) ✓ ✓ 2 39.02 38.39 37.11

(7) ✓ ✓ ✓ 2 39.39 38.73 37.41

(8) ✓ ✓ 3 39.38 38.77 37.53

(9) ✓ ✓ ✓ 3 39.76 39.09 37.76

Table 3. Ablation studies of the proposed network. Best in bold.

aware image representation. As shown in Table. 2, our

method outperforms other methods on all three metrics.

5.4. Ablation Studies

We implement a series of ablation studies to verify the

effectiveness of the proposed modules. We first focus

on the proposed multi-order DSFT fusion (MODF) and

multi-granularity alignment (MGA) as shown in Table. 3.

Cases (1–3) are about the MODF module. “Spike” means

there is only one branch with binary spikes as input, and

“D (1,1)” means there is only one branch with D
(1,1)
SFT as

input. Cases (4–9) explore the impact of pyramidal levels

and cross-attentional patch-level alignment (CAPA) on our

network. Cases (1–3) show the effectiveness of using multi-

order DSFT. Cases (4–9) show the effectiveness of pyrami-

dal alignment and using CAPA for initialization.

We also study the impact of the number of input frames

on the network. As shown in Table. 4, we select {1,3,5,7} as

the number of sub-streams, i.e., the number of input frames

NIF
η = 1.00 η = 0.75 η = 0.50

P ↑ S ↑ L ↓ P ↑ S ↑ L ↓ P ↑ S ↑ L ↓

21 38.14 0.959 0.032 37.44 0.952 0.039 36.08 0.935 0.055

41 39.35 0.969 0.021 38.67 0.963 0.027 37.34 0.949 0.041

61 39.76 0.970 0.021 39.09 0.964 0.027 37.76 0.951 0.040

81 39.70 0.969 0.022 39.03 0.963 0.028 37.69 0.950 0.042

Table 4. Ablation studies on the number of input frames NIF.

NIF is {21,41,61,81}. Since the space is limited, we use

the initial letters to represent the 3 reference metrics. When

NIF is small, the performance grows with NIF grows, but

this growth tends to converge when NIF is large. We set 61

as the NIF since the performance is converged.

6. Conclusions

We propose a method for reconstructing clear images from

spike streams with boosted approaches for dealing with

spike fluctuations. We reveal the unbiased estimation at-

tribute of the reciprocal of DSFT and design a multi-order

DSFT fusion (MODF) module. We also propose a pyrami-

dal multi-granularity alignment (MGA) module. The MGA

uses a cross-attentional patch-level operation with a local

search strategy for initialization and uses deformable convo-

lution for pixel-level alignment. Experimental results show

that the proposed method achieves state-of-the-art perfor-

mance on both synthetic and real-captured data.
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